Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 940
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Ethnopharmacol ; 327: 118045, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38479546

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Yunvjian (YNJ), a traditional Chinese herbal formula first reported in Jing Yue Quan Shu, is commonly used in the clinical treatment of type 2 diabetes mellitus (T2DM). However, the mechanism by which YNJ affects T2DM remains unclear. AIM OF THE STUDY: This study aimed to assess the therapeutic effects of YNJ on T2DM and explore the potential mechanism involved. MATERIALS AND METHODS: High-performance liquid chromatography (HPLC) was used to identify the chemical compounds of YNJ. The anti-T2DM effects of YNJ were observed in a high-fat diet/streptozotocin induced rat model. The type 2 diabetic rats were prepared as follows: rats were fed a high-fat diet for four weeks and then intraperitoneally injected with a low dose (30 mg/kg) of streptozotocin. YNJ and the positive control metformin were used in these experiments. Biochemical assays were implemented to determine the fasting blood glucose, glucose tolerance, insulin sensitivity, serum lipid levels, and oxidative stress index of the pancreas. Hematoxylin-eosin (H&E) staining was used to assess histopathological alterations in the pancreas. The mechanism by which YNJ affects T2DM was evaluated in INS-1 cells treated with glucose and high sodium palmitate. YNJ-supplemented serum was used in these experiments. Methyl thiazolyl tetrazolium assays, enzyme-linked immunosorbent assays, Nile red staining, flow cytometric analysis, and Western blotting were used to assess apoptosis, insulin secretion, lipid accumulation, reactive oxygen species production, and protein levels. RESULTS: Five major compounds were identified in YNJ. In high-fat diet/streptozotocin-induced diabetic rats, YNJ-M notably decreased fasting blood glucose and lipid levels; ameliorated glucose tolerance, insulin sensitivity, and islet morphology; reduced Malondialdehyde levels; and restored superoxide dismutase activity in the pancreatic islets. Furthermore, the effect of YNJ-M was significantly greater than that of YNJ-L, and YNJ-H had little effect on diabetic rats. In vitro experiments revealed that YNJ-supplemented serum (10%, 15%, and 20%) dramatically suppressed apoptosis, mitigated intracellular lipid accumulation and reduced intracellular oxidative stress levels in a dose-dependent manner. Additionally, YNJ-supplemented serum increased the protein expression of Nuclear factor erythroid 2-related factor 2, Heme oxygenase-1, and superoxide dismutase 1 and inhibited the protein expression of Kelch-like ECH-associated protein 1. CONCLUSION: YNJ ameliorates high-fat diet/streptozotocin induced experimental T2DM. The underlying mechanism involves reducing oxidative stress in pancreatic beta cells. The findings of this study provide scientific justification for the application of the traditional medicine YNJ in treating T2DM.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Hyperglycemia , Insulin Resistance , Insulin-Secreting Cells , Rats , Animals , Diabetes Mellitus, Type 2/chemically induced , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Streptozocin/pharmacology , Diet, High-Fat/adverse effects , Blood Glucose , Diabetes Mellitus, Experimental/metabolism , Oxidative Stress , Hyperglycemia/drug therapy , Glucose/metabolism , Lipids
2.
Phytomedicine ; 128: 155396, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38547617

ABSTRACT

BACKGROUND: Abnormalities in glucose metabolism may be the underlying cause of ß-cell dysfunction and identity impairment resulting from high glucose exposure. In China, Coptis deltoidea C. Y. Cheng et Hsiao (YL) has demonstrated remarkable hypoglycemic effects. HYPOTHESIS/PURPOSE: To investigate the hypoglycemic effect of YL and determine the mechanism of YL in treating diabetes. METHODS: A type 2 diabetes mouse model was used to investigate the pharmacodynamics of YL. YL was administrated once daily for 8 weeks. The hypoglycemic effect of YL was assessed by fasting blood glucose, an oral glucose tolerance test, insulin levels, and other indexes. The underlying mechanism of YL was examined by targeting glucose metabolomics, western blotting, and qRT-PCR. Subsequently, the binding capacity between predicted AMP-activated protein kinase (AMPK) and important components of YL (Cop, Ber, and Epi) were validated by molecular docking and surface plasmon resonance. Then, in AMPK knockdown MIN6 cells, the mechanisms of Cop, Ber, and Epi were inversely confirmed through evaluations encompassing glucose-stimulated insulin secretion, markers indicative of ß-cell identity, and the examination of glycolytic genes and products. RESULTS: YL (0.9 g/kg) treatment exerted notable hypoglycemic effects and protected the structural integrity and identity of pancreatic ß-cells. Metabolomic analysis revealed that YL inhibited the hyperactivated glycolysis pathway in diabetic mice, thereby regulating the products of the tricarboxylic acid cycle. KEGG enrichment revealed the intimate relationship of this process with the AMPK signaling pathway. Cop, Ber, and Epi in YL displayed high binding affinities for AMPK protein. These compounds played a pivotal role in preserving the identity of pancreatic ß-cells and amplifying insulin secretion. The mechanism underlying this process involved inhibition of glucose uptake, lowering intracellular lactate levels, and elevating acetyl coenzyme A and ATP levels through AMPK signaling. The use of a glycolytic inhibitor corroborated that attenuation of glycolysis restored ß-cell identity and function. CONCLUSION: YL demonstrates significant hypoglycemic efficacy. We elucidated the potential mechanisms underlying the protective effects of YL and its active constituents on ß-cell function and identity by observing glucose metabolism processes in pancreatic tissue and cells. In this intricate process, AMPK plays a pivotal regulatory role.


Subject(s)
AMP-Activated Protein Kinases , Coptis , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Insulin-Secreting Cells , Signal Transduction , Animals , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , AMP-Activated Protein Kinases/metabolism , Hypoglycemic Agents/pharmacology , Signal Transduction/drug effects , Mice , Diabetes Mellitus, Experimental/drug therapy , Male , Coptis/chemistry , Blood Glucose/drug effects , Insulin/metabolism , Mice, Inbred C57BL , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Molecular Docking Simulation , Glucose Tolerance Test , Plant Extracts/pharmacology
3.
J Endocrinol ; 261(1)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38305305

ABSTRACT

Metabolic syndrome (MetS) is an increasing global health threat and strong risk factor for type 2 diabetes (T2D). MetS causes both hyperinsulinemia and islet size overexpansion, and pancreatic ß-cell failure impacts insulin and proinsulin secretion, mitochondrial density, and cellular identity loss. The low-density lipoprotein receptor knockout (LDLr-/-) model combined with high-fat diet (HFD) has been used to study alterations in multiple organs, but little is known about the changes to ß-cell identity resulting from MetS. Osteocalcin (OC), an insulin-sensitizing protein secreted by bone, shows promising impact on ß-cell identity and function. LDLr-/- mice at 12 months were fed chow or HFD for 3 months ± 4.5 ng/h OC. Islets were examined by immunofluorescence for alterations in nuclear Nkx6.1 and PDX1 presence, insulin-glucagon colocalization, islet size and %ß-cell and islet area by insulin and synaptophysin, and mitochondria fluorescence intensity by Tomm20. Bone mineral density (BMD) and %fat changes were examined by Piximus Dexa scanning. HFD-fed mice showed fasting hyperglycemia by 15 months, increased weight gain, %fat, and fasting serum insulin and proinsulin; concurrent OC treatment mitigated weight increase and showed lower proinsulin-to-insulin ratio, and higher BMD. HFD increased %ß and %islet area, while simultaneous OC-treatment with HFD was comparable to chow-fed mice. Significant reductions in nuclear PDX1 and Nkx6.1 expression, increased insulin-glucagon colocalization, and reduction in ß-cell mitochondria fluorescence intensity were noted with HFD, but largely prevented with OC administration. OC supplementation here suggests a benefit to ß-cell identity in LDLr-/- mice and offers intriguing clinical implications for countering metabolic syndrome.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperinsulinism , Insulin-Secreting Cells , Islets of Langerhans , Metabolic Syndrome , Animals , Mice , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat/adverse effects , Glucagon/metabolism , Hyperinsulinism/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Lipoproteins, LDL , Metabolic Syndrome/genetics , Mice, Inbred C57BL , Mice, Knockout , Osteocalcin/metabolism , Proinsulin/metabolism , Weight Gain
4.
Acta Physiol (Oxf) ; 240(3): e14101, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38243723

ABSTRACT

AIM: Despite its abundance in pancreatic islets of Langerhans and proven antihyperglycemic effects, the impact of the essential amino acid, taurine, on islet ß-cell biology has not yet received due consideration, which prompted the current studies exploring the molecular selectivity of taurine import into ß-cells and its acute and chronic intracellular interactions. METHODS: The molecular aspects of taurine transport were probed by exposing the clonal pancreatic BRIN BD11 ß-cells and primary mouse and human islets to a range of the homologs of the amino acid (assayed at 2-20 mM), using the hormone release and imaging of intracellular signals as surrogate read-outs. Known secretagogues were employed to profile the interaction of taurine with acute and chronic intracellular signals. RESULTS: Taurine transporter TauT was expressed in the islet ß-cells, with the transport of taurine and homologs having a weak sulfonate specificity but significant sensitivity to the molecular weight of the transporter. Taurine, hypotaurine, homotaurine, and ß-alanine enhanced insulin secretion in a glucose-dependent manner, an action potentiated by cytosolic Ca2+ and cAMP. Acute and chronic ß-cell insulinotropic effects of taurine were highly sensitive to co-agonism with GLP-1, forskolin, tolbutamide, and membrane depolarization, with an unanticipated indifference to the activation of PKC and CCK8 receptors. Pre-culturing with GLP-1 or KATP channel inhibitors sensitized or, respectively, desensitized ß-cells to the acute taurine stimulus. CONCLUSION: Together, these data demonstrate the pathways whereby taurine exhibits a range of beneficial effects on insulin secretion and ß-cell function, consistent with the antidiabetic potential of its dietary low-dose supplementation.


Subject(s)
Insulin-Secreting Cells , Islets of Langerhans , Humans , Animals , Mice , Taurine/pharmacology , Signal Transduction , Glucagon-Like Peptide 1 , Hypoglycemic Agents
5.
J Ethnopharmacol ; 321: 117481, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38007164

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Modified Da Chaihu decoction (MDCH) is a traditional Chinese herbal prescription that has been used in the clinic to treat type 2 diabetes (T2D). Previous studies have confirmed that MDCH improves glycemic and lipid metabolism, enhances pancreatic function, and alleviates insulin resistance in patients with T2D and diabetic rats. Evidence has demonstrated that MDCH protects pancreatic ß cells via regulating the gene expression of sirtuin 1 (SIRT1) and forkhead box protein O1 (FOXO1). However, the detailed mechanism remains unclear. AIM OF THE STUDY: Dedifferentiation of pancreatic ß cells mediated by FOXO1 has been recognized as the main pathogenesis of T2D. This study aims to investigate the therapeutic effects of MDCH on T2D in vitro and in vivo to elucidate the potential molecular mechanisms. MATERIALS AND METHODS: To predict the key targets of MDCH in treating T2D, network pharmacology methods were used. A T2D model was induced in diet-induced obese (DIO) C57BL/6 mice with a single intraperitoneal injection of streptozotocin. Glucose metabolism indicators (oral glucose tolerance test, insulin tolerance test), lipid metabolism indicators (total cholesterol, triglyceride, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol), inflammatory factors (C-reactive protein, interleukin 6, tumor necrosis factor alpha), oxidative stress indicators (total antioxidant capacity, superoxide dismutase, malondialdehyde), and hematoxylin and eosin staining were analyzed to evaluate the therapeutic effect of MDCH on T2D. Immunofluorescence staining and quantification of FOXO1, pancreatic and duodenal homeobox 1 (PDX1), NK6 homeobox 1 (NKX6.1), octamer-binding protein 4 (OCT4), neurogenin 3 (Ngn3), insulin, and SIRT1, and Western blot analysis of insulin, SIRT1, and FOXO1 were performed to investigate the mechanism by which MDCH inhibited pancreatic ß-cell dedifferentiation. RESULTS: The chemical ingredients identified in MDCH were predicted to be important for signaling pathways related to lipid metabolism and insulin resistance, including lipids in atherosclerosis, the advanced glycation end product receptor of the advanced glycation end product signaling pathway, and the FOXO signaling pathway. Experimental studies showed that MDCH improved glucose and lipid metabolism in T2D mice, alleviated inflammation and oxidative stress damage, and reduced pancreatic pathological damage. Furthermore, MDCH upregulated the expression levels of SIRT1, FOXO1, PDX1, and NKX6.1, while downregulating the expression levels of OCT4 and Ngn3, which indicated that MDCH inhibited pancreatic dedifferentiation of ß cells. CONCLUSIONS: MDCH has therapeutic effects on T2D, through regulating the SIRT1/FOXO1 signaling pathway to inhibit pancreatic ß-cell dedifferentiation, which has not been reported previously.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Insulin Resistance , Insulin-Secreting Cells , Humans , Rats , Mice , Animals , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Experimental/metabolism , Cell Dedifferentiation , Sirtuin 1/metabolism , Network Pharmacology , Mice, Inbred C57BL , Insulin/metabolism , Cholesterol/metabolism
6.
FEBS Open Bio ; 14(3): 434-443, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38129973

ABSTRACT

Type 1 diabetes (T1D) is an autoimmune disease initiated by genetic predisposition and environmental influences, which result in the specific destruction of insulin-producing pancreatic ß-cells. Currently, there are over 1.6 million cases of T1D in the United States with a worldwide incidence rate that has been increasing since 1990. Here, we examined the effect of Cornus officinalis (CO), a well-known ethnopharmacological agent, on a T1D model of the non-obese diabetic (NOD) mouse. A measured dose of CO extract was delivered into 10-week-old NOD mice by oral gavage for 15 weeks. T1D incidence and hyperglycemia were significantly lower in the CO-treated group as compared to the water gavage (WT) and a no handling or treatment control group (NHT) following treatment. T1D onset per group was 30%, 60% and 86% for the CO, WT and NHT groups, respectively. Circulating C-peptide was higher, and pancreatic insulitis was decreased in non-T1D CO-treated mice. Our findings suggest that CO may have therapeutic potential as both a safe and effective interventional agent to slow early stage T1D progression.


Subject(s)
Cornus , Diabetes Mellitus, Type 1 , Hyperglycemia , Insulin-Secreting Cells , Mice , Animals , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/genetics , Mice, Inbred NOD , Hyperglycemia/drug therapy
7.
In Vitro Cell Dev Biol Anim ; 60(1): 23-35, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38117455

ABSTRACT

It has been well established that the circulating taurine affects the insulin synthesis in pancreatic islet ß-cells, whereas miR-7a and LIM-homeodomain transcription factor Isl-1 are important intracellular factors regulating insulin transcription and synthesis. However, it still remains unknown whether taurine regulates insulin synthesis by affecting miR-7a and/or Isl-1 expressions in mouse pancreatic islet ß-cells. The present study was thus proposed to identify the effects of taurine on the expressions of miR-7a and/or Isl-1 and their relations to insulin synthesis in mouse pancreatic islet ß-cells by using miR-7a2 knockout (KO) and taurine transporter (TauT) KO mouse models and the related in vitro experiments. The results demonstrated that taurine supplement significantly decreased the pancreas miR-7a expression, but sharply upregulated the pancreas Isl-1 and insulin expressions, and serum insulin levels. However, the enhanced effects of taurine on Isl-1 expression and insulin synthesis were mitigated in the TauT KO and miR-7a2 KO mice. In addition, our results confirmed that taurine markedly increased pancreas RAF1 and ERK1/2 expressions. Collectively, the present study firstly demonstrates that taurine regulates insulin synthesis through TauT/miR-7a/RAF1/ERK1/2/Isl-1 signaling pathway, which are crucial for our understanding the mechanisms of taurine affecting insulin synthesis, and also potential for establishing the therapeutic strategies for diabetes and the diseases related to metabolism.


Subject(s)
Insulin-Secreting Cells , MicroRNAs , Animals , Mice , Insulin/metabolism , Insulin-Secreting Cells/metabolism , MAP Kinase Signaling System , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , Taurine/pharmacology , Taurine/metabolism
8.
Biophys Chem ; 304: 107130, 2024 01.
Article in English | MEDLINE | ID: mdl-37952497

ABSTRACT

Impeding or reducing human amylin aggregation and/or its toxicity can be key to preventing pancreatic islet amyloidosis and ß-cell loss in patients with Type 2 Diabetes Mellitus (T2DM). Here, Punica granatum (pomegranate) peel, Sideritis raeseri (ironwort) and Aronia melanocarpa (chokeberry) leaf extracts, were tested for their novel anti-aggregative and antitoxic properties in human amylin (hIAPP) treated rat pancreatic insulinoma (INS) cells. The protein aggregation (Th-T) assay revealed an inhibitory trend of all three plant extracts against amylin aggregates. In agreement with this finding, pomegranate peel and ironwort extracts effectively prevented the transition of hIAPP from disordered, random coil structures into aggregation prone ß-sheet enriched molecular assemblies, revealed by CD spectroscopy. Consistent with their anti-aggregative action, all three extracts prevented, to various degrees, reactive oxygen species (ROS) accumulation, mitochondrial stress, and, ultimately, apoptosis of INS cells. Collectively, the results from this study demonstrate effectiveness of natural products to halt hIAPP aggregation, redox stress, and toxicity, which could be exploited as novel therapeutics against amylin-derived islet amyloidosis and ß-cell stress in T2DM.


Subject(s)
Amyloidosis , Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Pomegranate , Sideritis , Humans , Rats , Animals , Islet Amyloid Polypeptide/chemistry , Diabetes Mellitus, Type 2/metabolism , Sideritis/metabolism , Pomegranate/metabolism , Amyloidosis/metabolism , Plant Extracts/pharmacology
9.
Environ Sci Pollut Res Int ; 30(59): 123286-123308, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37981611

ABSTRACT

This study investigated the anti-hyperglycemic action of mango seed kernel extract (MKE) and various mechanisms involved in its actions to improve pancreatic ß cells and hepatic carbohydrate metabolism in diabetic rats. An intraperitoneal injection of 60 mg/kg of streptozotocin (STZ) followed by 30 consecutive days of treatment with MKE (250, 500, and 1000 mg/kg body weight) was used to establish a study group of diabetic rats. Using liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS) for identification, 26 chemical compounds were found in MKE and the high-performance liquid chromatography (HPLC) analysis of the MKE also revealed the existence of mangiferin, gallic acid, and quercetin. The results confirmed that in each diabetes-affected rat, MKE mitigated the heightened levels of fasting blood glucose, diabetic symptoms, glucose intolerance, total cholesterol (TC), and low-density lipoprotein-cholesterol (LDL-C). As demonstrated by a remarkable increment in serum and pancreatic insulin, the diabetic pancreatic ß cell function was potentiated by treating with MKE. The effect of MKE on diabetic pancreatic apoptosis clearly reduced the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells, which was related to diminished levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and Bax and an increase in Bcl-xL protein expression. Furthermore, diabetes-induced liver damage was clearly ameliorated along with a notable reduction in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels and abnormal liver histology. By enhancing anti-oxidant superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, MKE alleviated diabetes-induced pancreatic and liver oxidative damage, as demonstrated by diminished levels of malondialdehyde. In minimizing the expression levels of glucose 6-phosphatase and phosphoenolpyruvate carboxykinase-1 proteins in the diabetic liver, MKE also enhanced glycogen content and hexokinase activity. Collectively, these findings indicate that by suppressing oxidative and inflammatory processes, MKE exerts a potent anti-hyperglycemic activity in diabetic rats which serve to protect pancreatic ß cell apoptosis, enhance their function, and improve hepatic glucose metabolism.


Subject(s)
Diabetes Mellitus, Experimental , Hyperglycemia , Insulin-Secreting Cells , Mangifera , Rats , Animals , Glucose/metabolism , Diabetes Mellitus, Experimental/metabolism , Tandem Mass Spectrometry , Blood Glucose/analysis , Antioxidants/metabolism , Hyperglycemia/metabolism , Liver , Apoptosis , Oxidative Stress , Plant Extracts/pharmacology , Plant Extracts/metabolism , Hypoglycemic Agents/pharmacology , Carbohydrate Metabolism , Cholesterol/metabolism
10.
Phytomedicine ; 119: 154964, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37544212

ABSTRACT

BACKGROUND: Nutraceuticals have been important for more than two decades for their safety, efficacy, and outstanding effects. Diabetes is a major metabolic syndrome, which may be improved using nutritional pharmaceuticals. Some microalgae species, such as spirulina, stand out by providing biomass with exceptional nutritional properties. Spirulina has a wide range of pharmacological effects, mostly related to phycocyanin. Phycocyanin is a protein compound with antidiabetic properties, known as a nutraceutical. OBJECTIVE: This review delves into phycocyanin applications in diabetes and its complications and ascertains the mechanisms involved. METHODS: Scopus, PubMed, Cochrane Library, Web of Science, and ProQuest databases were systematically reviewed (up to April 30, 2023), in which only animal and cellular studies were found. RESULTS: According to animal studies, the administration of phycocyanin affected biochemical parameters (primary outcome) related to diabetes. These results showed an increase in fasting insulin serum and a decrease in fasting blood glucose, glycosylated serum protein, and glycosylated hemoglobin. In cellular studies, though, phycocyanin prevented methylglyoxal and human islet amyloid polypeptide-induced dysfunction in ß-cells and induced apoptosis through different molecular pathways (secondary outcome), including activation of Nrf2, PI3K/Akt, and suppression of JNK and p38. Also, phycocyanin exerted its antidiabetic effect by affecting the pathways regulating hepatic glucose metabolism. CONCLUSIONS: Thus, based on the available information and literature, targeting these pathways by phycocyanin may unleash an array of benefits, including positive outcomes of the antidiabetic effects of phycocyanin as a nutraceutical. OTHER: This systematic review was registered in the International Prospective Register of Systematic Reviews (PROSPERO) at the National Institute of Health. The registration number is CRD42022307522.


Subject(s)
Insulin-Secreting Cells , Spirulina , Animals , Humans , Phycocyanin/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Systematic Reviews as Topic , Hypoglycemic Agents/pharmacology , Spirulina/chemistry
11.
Chem Biodivers ; 20(8): e202300578, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37458474

ABSTRACT

The rhizoma of Anemarrhenae asphodeloides has a long history of hypoglycemic use in Chinese traditional medicine. In this article, 400 µmol/L H2 O2 induced normal INS-1 pancreatic beta cells to establish experimental model of oxidative damage. Quercetin was used as a positive drug, and mangiferin and its ethanolic extract were selected as therapeutic agents in an oxidative damage model to evaluate the ameliorative effect of the active ingredients of Anemarrhenae asphodeloides rhizoma on oxidative damage in INS-1 pancreatic ß-cells. Building a qualitative analysis method of membrane phospholipids of INS-1 pancreatic beta cells and identified 82 phospholipids based on the UPLC/Q-TOF MS technology, which could provide a database for further statistics analysis. OPLS-DA was used to screen the phospholipid biomarkers from the raw data. Exploring the biological significances of these biomarkers, and discussing the toxic effect of the effective components of Anemarrhena asphodeloides rhizoma, on oxidatively damaged INS-1 pancreatic beta cell.


Subject(s)
Anemarrhena , Drugs, Chinese Herbal , Insulin-Secreting Cells , Chromatography, High Pressure Liquid/methods , Rhizome , Drugs, Chinese Herbal/pharmacology
12.
Sci Rep ; 13(1): 10617, 2023 06 30.
Article in English | MEDLINE | ID: mdl-37391460

ABSTRACT

Nanotechnology is used to overcome fundamental flaws in today's marketed pharmaceuticals that obstruct therapy, like restricted solubility and quick release of drugs into the bloodstream. In both human and animal researches, melatonin was demonstrated to regulate glucose levels. Despite the fact that melatonin is quickly transported through the mucosa, its sensitivity to be oxidized creates a difficulty in achieving the required dose. Additionally, due to its variable absorption and poor oral bioavailability necessitates the development of alternative delivery methods. The study aimed to synthesize melatonin loaded chitosan/lecithin (Mel-C/L) nanoparticles to be assessed in the treatment of streptozotocin (STZ)-induced diabetes in rats. The antioxidant, anti-inflammatory, and cytotoxicity properties of nanoparticles were estimated to determine the safety of manufactured nanoparticles for in vivo studies. In addition, Mel-C/L nanoparticles were administered to rats for eight weeks after inducing hyperglycemia. The therapeutic effect of Mel-C/L nanoparticles was assessed in all experimental groups by detecting insulin and blood glucose levels; observing improvements in liver and kidney functions as well as histological and immunohistochemical evaluation of rats' pancreatic sections. The results proved that Mel-C/L nanoparticles showed remarkable anti-inflammatory, anti-coagulant, and anti-oxidant effects, in addition to its efficiency in reducing blood glucose levels of STZ-induced diabetic rats and great ability to promote the regeneration of pancreatic beta (ß)-cells. Furthermore, Mel-C/L nanoparticles elevated the insulin level; and decreased the elevated levels of urea, creatinine and cholesterol. In conclusion, nanoparticles application decreased the administrated melatonin dose that in turn can diminish the side effects of free melatonin administration.


Subject(s)
Chitosan , Diabetes Mellitus, Experimental , Hyperglycemia , Insulin-Secreting Cells , Melatonin , Humans , Animals , Rats , Lecithins , Melatonin/pharmacology , Streptozocin , Diabetes Mellitus, Experimental/drug therapy , Blood Glucose , Hyperglycemia/drug therapy , Antioxidants/pharmacology , Insulin
13.
J Ethnopharmacol ; 315: 116564, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37244407

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Fufang-Zhenzhu-Tiaozhi capsule (FTZ), a Traditional Chinese Medicine (TCM) patent prescription commonly used in clinical practice, has a significant curative effect on hyperglycemia and hyperlipidemia. Previous studies have shown that FTZ can treat diabetes, but the effect of FTZ on ß-cell regeneration needs to be further explored in T1DM mice. AIM OF THE STUDY: The aim is to investigate the role of FTZ in promoting ß-cell regeneration in T1DM mice, and to further explore its mechanism. MATERIALS AND METHODS: C57BL/6 mice were used as control. NOD/LtJ mice were divided into the Model group and FTZ group. Oral glucose tolerance, fasting blood glucose, and fasting insulin level were measured. Immunofluorescence staining was used to detect the level of ß-cell regeneration and the composition of α-cells and ß-cells in islets. Hematoxylin and eosin staining was used to detect the infiltration degree of inflammatory cells. The apoptosis of islet cells was detected by terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling. Western blotting was used to detect the expression levels of Pancreas/duodenum homeobox protein 1 (PDX-1), V-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MAFA), and Neurogenin-3 (NGN3). RESULTS: FTZ could increase insulin levels and reduce the glucose level of T1DM mice and promote ß-cell regeneration. FTZ also inhibited the invasion of inflammatory cells and the islet cell apoptosis, and maintained the normal composition of islet cells, thus preserving the quantity and quality of ß-cells. Furthermore, FTZ promoting ß-cell regeneration was accompanied by increasing the expression of PDX-1, MAFA, and NGN3. CONCLUSION: FTZ can restore the insulin-secreting function of the impaired pancreatic islet, improve blood glucose level, possibly via the enhancing ß cell regeneration via upregulation of PDX-1, MAFA, and NGN3 in T1DM mice, and may be a potential therapeutic drug for T1DM.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Islets of Langerhans , Mice , Animals , Diabetes Mellitus, Type 1/metabolism , Blood Glucose/metabolism , Mice, Inbred NOD , Mice, Inbred C57BL , Islets of Langerhans/metabolism , Insulin-Secreting Cells/metabolism , Insulin , Regeneration , Cell Proliferation
14.
J Trace Elem Med Biol ; 79: 127217, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37224745

ABSTRACT

OBJECTIVES: Zinc, which is found in high concentrations in the ß-cells of the pancreas, is also a critical component for the endocrine functions of the pancreas. SLC30A8/ZnT8 is the carrier protein responsible for the transport of zinc from the cytoplasm to the insulin granules. The aim of this study was to investigate how dietary zinc status affects pancreatic beta cell activation and ZnT8 levels in infant male rats born to zinc-deficient mothers. METHODS: The study was performed on male pups born to mothers fed a zinc-deficient diet. A total of 40 male rats were divided into 4 equal groups. Group 1: In addition to maternal zinc deficiency, this group was fed a zinc-deficient diet. Group 2: In addition to maternal zinc deficiency, this group was fed a standard diet. Group 3: In addition to maternal zinc deficiency, this group was fed a standard diet and received additional zinc supplementation. Group 4: Control group. Pancreas ZnT8 levels were determined by ELISA method and insulin-positive cell ratios in ß-cells by immunohistochemistry. RESULTS: The highest pancreatic ZnT8 levels and anti-insulin positive cell ratios in the current study were obtained in Group 3 and Group 4. In our study, the lowest pancreatic ZnT8 levels were obtained in Group 1 and Group 2, and the lowest pancreatic anti-insulin positive cell ratios were obtained in Group 1. CONCLUSION: The results of the present study; in rats fed a zinc-deficient diet after maternal zinc deficiency has been established shows that ZnT8 levels and anti-insulin positive cell ratios in pancreatic tissue, which is significantly suppressed, reach control values with intraperitoneal zinc supplementation.


Subject(s)
Cation Transport Proteins , Insulin-Secreting Cells , Islets of Langerhans , Rats , Male , Animals , Insulin-Secreting Cells/metabolism , Zinc/metabolism , Cation Transport Proteins/metabolism , Islets of Langerhans/metabolism , Zinc Transporter 8/metabolism , Insulin/metabolism
15.
J Med Food ; 26(6): 357-367, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37083465

ABSTRACT

We examined the effects of HM-chromanone (HMC) on alleviating hyperglycemia and protecting pancreatic ß-cells from streptozotocin (STZ)-induced damage in C57BL/6J mice. HMC was administered to STZ-induced diabetic mice at 10 or 30 mg/kg, for 14 days. Thereafter, changes in fasting blood glucose levels, insulin-secretion, histopathological examination of pancreas islet cell and apoptotic protein levels, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay were determined. The results revealed that HMC dose-dependently improved blood glucose concentrations and alleviated pancreatic islet cells damage. In diabetic mice, degeneration of the islet cells was observed wherein they appeared shrunken, with hyaline deterioration, nuclear dissolution, and condensation. However, morphology of the islet cell was restored, and nuclei were visibly rounded in the HMC (30 mg/kg)-administered diabetic mice. In addition, ß-cell numbers were markedly increased in HMC mice compared to STZ-induced diabetic mice, and the number of cells stained with glucagon was decreased. HMC markedly decreased the expression of proapoptotic proteins and increased antiapoptotic proteins, and the number of apoptotic cells detected by TUNEL was elevated. HMC decreased expression of interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α in diabetic mice. Moreover, HMC increased antioxidant-enzymes activity, and decreased reactive oxygen species generation. In conclusion, the results demonstrate the potential of HMC to alleviate hyperglycemia by protecting the pancreatic ß-cells in diabetic mice.


Subject(s)
Diabetes Mellitus, Experimental , Hyperglycemia , Insulin-Secreting Cells , Islets of Langerhans , Mice , Animals , Streptozocin/adverse effects , Insulin , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Mice, Inbred C57BL , Islets of Langerhans/metabolism , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Insulin-Secreting Cells/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism
16.
J Clin Invest ; 133(8)2023 04 17.
Article in English | MEDLINE | ID: mdl-37066881

ABSTRACT

Insulin secretion by pancreatic ß cells is a dynamic and highly regulated process due to the central importance of insulin in enabling efficient utilization and storage of glucose. Multiple regulatory layers enable ß cells to adapt to acute changes in nutrient availability as well as chronic changes in metabolic demand. While epigenetic factors have been well established as regulators of chronic ß cell adaptations to insulin resistance, their role in acute adaptations in response to nutrient stimulation has been relatively unexplored. In this issue of the JCI, Wortham et al. report that short-term dynamic changes in histone modifications regulated insulin secretion and acute ß cell adaptations in response to fasting and feeding cycles. These findings highlight the importance of investigating whether other epigenetic mechanisms may contribute to acute physiologic adaptations in ß cells.


Subject(s)
Insulin Resistance , Insulin-Secreting Cells , Insulin Secretion , Onions/metabolism , Insulin/metabolism , Glucose/metabolism , Insulin Resistance/physiology , Insulin-Secreting Cells/metabolism
17.
Biofactors ; 49(3): 646-662, 2023.
Article in English | MEDLINE | ID: mdl-36714992

ABSTRACT

The semi-essential ubiquitous amino acid taurine has been shown to alleviate obesity and hyperglycemia in humans; however, the pathways underlying the antidiabetic actions have not been characterized. We explored the effect of chronic taurine exposure on cell biology of pancreatic islets, in degenerative type 1-like diabetes. The latter was modeled by small dose of streptozotocin (STZ) injection for 5 days in mice, followed by a 10-day administration of taurine (2% w/v, orally) in the drinking water. Taurine treatment opposed the detrimental changes in islet morphology and ß-/α-cell ratio, induced by STZ diabetes, coincidentally with a significant 3.9 ± 0.7-fold enhancement of proliferation and 40 ± 5% reduction of apoptosis in ß-cells. In line with these findings, the treatment counteracted an upregulation of antioxidant (Sod1, Sod2, Cat, Gpx1) and downregulation of islet expansion (Ngn3, Itgb1) genes induced by STZ, in a pancreatic ß-cell line. At the same time, taurine enhanced the transdifferentiation of α-cells into ß-cells by 2.3 ± 0.8-fold, echoed in strong non-metabolic elevation of cytosolic Ca2+ levels in pancreatic α-cells. Our data suggest a bimodal effect of dietary taurine on islet ß-cell biology, which combines the augmentation of α-/ß-cell transdifferentiation with downregulation of apoptosis. The dualism of action, stemming presumably from the intra- and extracellular modality of the signal, is likely to explain the antidiabetic potential of taurine supplementation.


Subject(s)
Insulin-Secreting Cells , Islets of Langerhans , Humans , Mice , Animals , Taurine/pharmacology , Cell Transdifferentiation , Blood Glucose/metabolism , Islets of Langerhans/metabolism , Hypoglycemic Agents/pharmacology , Streptozocin , Insulin/metabolism
18.
J Integr Med ; 21(1): 99-105, 2023 01.
Article in English | MEDLINE | ID: mdl-36481247

ABSTRACT

OBJECTIVE: To investigate the effect of ferulic acid, a natural compound, on pancreatic beta cell viability, Ca2+ channels, and insulin secretion. METHODS: We studied the effects of ferulic acid on rat insulinoma cell line viability using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide viability assay. The whole-cell patch-clamp technique and enzyme-linked immunosorbent assay were also used to examine the action of ferulic acid on Ca2+ channels and insulin secretion, respectively. RESULTS: Ferulic acid did not affect cell viability during exposures up to 72 h. The electrophysiological study demonstrated that ferulic acid rapidly and concentration-dependently increased L-type Ca2+ channel current, shifting its activation curve in the hyperpolarizing direction with a decreased slope factor, while the voltage dependence of inactivation was not affected. On the other hand, ferulic acid have no effect on T-type Ca2+ channels. Furthermore, ferulic acid significantly increased insulin secretion, an effect inhibited by nifedipine and Ca2+-free extracellular fluid, confirming that ferulic acid-induced insulin secretion in these cells was mediated by augmenting Ca2+ influx through L-type Ca2+ channel. Our data also suggest that this may be a direct, nongenomic action. CONCLUSION: This is the first electrophysiological demonstration that acute ferulic acid treatment could increase L-type Ca2+ channel current in pancreatic ß cells by enhancing its voltage dependence of activation, leading to insulin secretion.


Subject(s)
Insulin-Secreting Cells , Insulin , Rats , Animals , Insulin Secretion , Insulin/pharmacology , Insulin-Secreting Cells/metabolism , Coumaric Acids/pharmacology , Coumaric Acids/metabolism , Calcium/metabolism
19.
J Agric Food Chem ; 71(1): 347-357, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36541437

ABSTRACT

So far, the potential role of vitamin D in ß-cell function remains a matter of debate. Therefore, a randomized, placebo-controlled trial (RCT) was conducted to evaluate the effect of a vitamin D supplement with or without calcium on ß-cell function in a Chinese population with prediabetes. Two hundred and forty-three subjects were randomly assigned in a 2-by-2 factorial-design RCT to receive either 1600 IU/day vitamin D3 with/or 500 mg/day calcium for 24 weeks. The results showed that oral administration of vitamin D and calcium could increase the secretion of insulin. Vitamin D-insufficient individuals displayed an increment in the disposition index (adjusted change = 0.31, 95%CI: 0.07, 0.56) after treatment by vitamin D + calcium. It illustrated that supplementation with vitamin D and calcium might improve the function of pancreatic ß-cell in prediabetes with low serum 25(OH)D levels. However, further studies are needed to confirm the findings. Given the low vitamin D content in natural foods, it is necessary to fortify processed foods with vitamin D.


Subject(s)
Insulin Resistance , Insulin-Secreting Cells , Prediabetic State , Humans , Calcium , Calcium, Dietary , Cholecalciferol , Dietary Supplements , Double-Blind Method , Prediabetic State/drug therapy , Vitamin D , Vitamins
20.
Stem Cell Res Ther ; 13(1): 528, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36544223

ABSTRACT

BACKGROUND: Nowadays, diabetes mellitus is known as a silent killer because individual is not aware that he has the disease till the development of its complications. Many researchers have studied the use of stem cells in treatment of both types of diabetes. Mesenchymal stem cells (MSCs) hold a lot of potential for regenerative therapy. MSCs migrate and home at the damaged site, where they can aid in the repair of damaged tissues and restoring their function. Oxidative stress and inflammation represent a huge obstacle during MSCs transplantation. Therefore, the present study aimed to evaluate the role of grape seed extract (GSE) administration during MSCs transplantation in streptozotocin (STZ)-induced type I diabetes. Furthermore, testing some of GSE components [procyanidins(P)-B1 and P-C1] in conjunction with MSCs, in vivo, was performed to determine if one of them was more effective in relieving the measured attributes of diabetes more than the whole GSE. METHODS: Firstly, GSE was prepared from the seeds of Muscat of Alexandria grapes and characterized to identify its phytochemical components. Experimental design was composed of control group I, untreated diabetic group II, GSE (300 mg/kg)-treated diabetic group III, MSCs (2 × 106 cells/rat)-treated diabetic group IV and GSE (300 mg/kg)/MSCs (2 × 106 cells/rat)-treated diabetic group V. Type I diabetes was induced in rats by intravenous injection with 65 mg/kg of STZ. Treatment started when fasting blood glucose (FBG) level was more than 200 mg/dl; GSE oral administration started in the same day after MSCs intravenous injection and continued daily for 30 consecutive days. RESULTS: The results showed that GSE/MSCs therapy in type I-induced diabetic rats has dramatically managed homeostasis of glucose and insulin secretion; together with, improvement in levels of inflammatory markers and oxidative stress. CONCLUSION: Co-treatment with GSE and MSCs in vivo regenerates beta cells in type I-induced diabetic rats.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Grape Seed Extract , Insulin-Secreting Cells , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Male , Rats , Animals , Grape Seed Extract/pharmacology , Grape Seed Extract/therapeutic use , Diabetes Mellitus, Experimental/therapy , Pancreas , Diabetes Mellitus, Type 1/therapy , Mesenchymal Stem Cell Transplantation/methods , Insulin , Blood Glucose
SELECTION OF CITATIONS
SEARCH DETAIL